Standard Normal Distribution Table - Stats Solver (2024)

The standard normal table, or z table, provides probabilities for the standard normal probability distribution. The standard normal probability distribution is simply a normal probability distribution with a mean of zero and a standard deviation of one. Like the normal probability distribution, the standard normal probability distribution has a bell-shape. The mean of the distribution is in the middle, which is also the highest point on the curve. Furthermore, the distribution is symmetric about the mean, with the right side of the curve being a mirror image of the left side.


Since the standard normal probability distribution is a continuous probability distribution, probabilities are given by the area under the graph. The z table gives the area under the standard normal distribution to the left of different z values. These areas are thus the probability that z will be less than or equal to that value. It is often the case that the probability you are looking for is not less than or equal but rather the probability that z will be greater than or equal or between two values. These types of probabilities involve additional steps.


The z table is made up of two pages. The first page is for negative z values and the second page is for positive z values. To find the the area (probability) to the left of a negative z-value, use the first page. For example, to find the area to the left of -1.2, match up -1.2 in the first column with .05 in the first row. The corresponding area is .1056. So that means that the probability that z will be less than or equal to -1.25 is .1056. Note that the standard normal distribution is a continuous probability distribution. That means that the probability that z will take exactly one value is zero. So the probability that z will be less than or equal to a value is the same as the probability that z will be less than that value.

z .03 .04 .05 .06 .07
-1.3 .0918 .0901 .0885 .0869 .0853
-1.2 .1093 .1075 .1056 .1038 .1020
-1.1 .1292 .1271 .1251 .1230 .1210

Calculating the probability that z will be greater than or equal to some value requires an additional step. Suppose you want to calculate the probability that z will be greater than or equal to 0.83. Start with the fact that the total area under the standard normal distribution is one. This means that the area to the right of .83 will be one minus the area to the left of .83. It is important to look at the problem in this way because the standard normal table only gives you the area to the left. Then, using the table, the area to the left of 0.83 is .7967. So the area to the right of 0.83 is 1 - .7967 = .2033.

z .01 .02 .03 .04 .05
0.7 .7611 .7642 .7673 .7704 .7734
0.8 .7910 .7939 .7967 .7995 .8023
0.9 .8186 .8212 .8238 .8264 .8289

The third type of probability to know how to calculate for the standard normal distribution is the probability that z will be between two values. For example, suppose you want to find the probability that z will be between 0.83 and 2.57. Again, the standard normal distribution only gives us the area to the left of z-values, not the area between. However, if we subtract the area to the left of the large z-value minus the area to the left of the smaller z-value, the result will be the area between them. So the area to the left of 2.57 minus the area to the left 0.83 is equal to the area between 0.83 and 2.57. Thus the probability that z will be between 0.83 and 2.57 is .9932 - .7967 = .1965.

z .05 .06 .07 .08 .09
2.4 .9929 .9931 .9932 .9934 .9936
2.5 .9946 .9948 .9949 .9951 .9952
2.6 .9960 .9961 .9962 .9963 .9964

One of the main applications of the standard normal distribution is computing probabilities for normal distributions in general. The normal distribution has many real world applications. For example, heights, weights, rainfall, test scores and many other real world phenomena follow a normal distribution. Probabilities for a normal distribution can be computed by first converting to the standard normal distribution. After conversion, the normal procedure for calculating probabilities for a standard normal distribution can be used.

Normal to Standard Normal
$ z = \dfrac{x-\mu}{\sigma} $

Aside from real-world applications, the normal distribution, and thus the standard normal distribution, is frequently used in statistical inference. The sampling distribution of the sample mean follows a normal distribution when the sample size is large. So probabilities can be calculated for the sample mean using the standard normal distribution. It is also used in confidence intervals and hypothesis testing when the population standard deviation is known. In confidence interval, the standard normal distribution is used to compute the margin of error. In hypothesis testing, the standard normal distribution is used to calculate the test statistic.

Standard Normal Distribution Table - Stats Solver (2024)

FAQs

What is on a standard distribution table? ›

The standard normal distribution table is a compilation of areas from the standard normal distribution, more commonly known as a bell curve, which provides the area of the region located under the bell curve and to the left of a given z-score to represent probabilities of occurrence in a given population.

How do you find the standard normal distribution in statistics? ›

Any point (x) from a normal distribution can be converted to the standard normal distribution (z) with the formula z = (x-mean) / standard deviation. z for any particular x value shows how many standard deviations x is away from the mean for all x values.

How to solve normal distribution problems? ›

Step 1: Subtract the mean from the x value. Step 2: Divide the difference by the standard deviation. The z score for a value of 1380 is 1.53. That means 1380 is 1.53 standard deviations from the mean of your distribution.

What is the formula for the standard normal variate? ›

z = (X – μ) / σ

where X is a normal random variable, μ is the mean of X, and σ is the standard deviation of X.

How to find value from normal distribution table? ›

To use a z-table, first turn your data into a normal distribution and calculate the z-score for a given value. Then, find the matching z-score on the left side of the z-table and align it with the z-score at the top of the z-table. The result gives you the probability.

How to use at distribution table? ›

How to use a t-table
  1. Identify if the table is for two-tailed or one-tailed tests. Then, decide if you have a one-tailed or a two-tailed test. ...
  2. Identify the degrees of freedom for your data. ...
  3. Find the cell in the table at the intersection of your α level and degrees of freedom.

What is an example of a standard normal distribution? ›

In a normal distribution, half the data will be above the mean and half will be below the mean. Examples of normal distributions include standardized test scores, people's heights, IQ scores, incomes, and shoe size.

What is the general formula for normal distribution? ›

Let X be a continuous random variable. Then X takes on a normal distribution with parameters μ (the mean) and σ (the standard deviation), denoted X∼N(μ,σ2) X ∼ N ( μ , σ 2 ) , if its probability density function is f(x)=1σ√2πexp(−12((x−μ)σ)2).

What is a normal distribution for dummies? ›

What Is a Normal Distribution? Normal distribution, also known as the Gaussian distribution, is a probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean. The normal distribution appears as a "bell curve" when graphed.

How do you manually calculate normal distribution? ›

For a random variable x, with mean “μ” and standard deviation “σ”, the normal distribution formula is given by: f(x) = (1/√(2πσ2)) (e[-(x-μ)^2]/^2).

How do you calculate normal? ›

Calculating a surface normal

For a convex polygon (such as a triangle), a surface normal can be calculated as the vector cross product of two (non-parallel) edges of the polygon.

How do you find the Z standard? ›

There are three variables to consider when calculating a z-score: the raw score (x), the population mean (μ), and the population standard deviation (σ). To get the z-score, subtract the population mean from the raw score and divide the result by the population standard deviation.

What is the standard z test formula? ›

A one-sample z test is used to check if there is a difference between the sample mean and the population mean when the population standard deviation is known. The formula for the z test statistic is given as follows: z = ¯¯¯x−μσ√n x ¯ − μ σ n .

What is on the z-score table? ›

A Z-score table shows the percentage of values (usually a decimal figure) to the left of a given Z-score on a standard normal distribution. For negative Z-scores, look up the positive version on this table, and subtract it from 1.

What do the values of the standard normal distribution table represent? ›

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

How do you tell if data is normally distributed from a table? ›

Calculate the standard deviation and the mean. Count the values that are between the mean minus one standard deviation and the mean plus one standard deviation. If the data is normally distributed, close to 68% of the data will be in the count of values.

References

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Frankie Dare

Last Updated:

Views: 6066

Rating: 4.2 / 5 (73 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Frankie Dare

Birthday: 2000-01-27

Address: Suite 313 45115 Caridad Freeway, Port Barabaraville, MS 66713

Phone: +3769542039359

Job: Sales Manager

Hobby: Baton twirling, Stand-up comedy, Leather crafting, Rugby, tabletop games, Jigsaw puzzles, Air sports

Introduction: My name is Frankie Dare, I am a funny, beautiful, proud, fair, pleasant, cheerful, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.